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Evaluation of lattice sums using Poisson’s summation 
formula IV 

A N Chaba and R K Pathriat 

Universidade Federal da Paraiba, Departamento de Fkica, CCEN, Joa’o Pessoa, Paraiba, 
Brasil 

Received 26 May 1977 

Abstract. Using Poisson’s summation formulaof dimensionality one or two, it is shown how 
a class of two-dimensional lattice sums involving modified Bessel functions can be reduced 
to rapidly convergent one-dimensional sums. The resulting formulae provide a simplifica- 
tion, and in many cases generalisation, of the ones obtained previously by Fetter and by 
Hautot. 

1. Introduction 

Recently we developed a method, based on the application of Poisson’s summation 
formula, for the analytic evaluation of a class of lattice sums appearing in the theory of 
cubic lattices (Chaba and Pathria 1975, 1976a, 1976b; to be referred to as I, I1 and 111, 
respectively). This method is now applied to a class of two-dimensional lattice sums, 
involving modified Bessel functions, which appear in the theory of clean type-I1 
superconductors, rotating superfluid helium, and plasma oscillations in an array of 
filamentary conductors. The sums considered are the following: 

( v = 0 , 1 , 2 ,  ...) (1) 

and 

(v = 0, 1 , 2 , .  . .) (2) 

where 2 in (1) excludes the term with ml = m2 = 0. In (2), the vector E is generally 
non-zero and the summation Z includes the term with m l  = m2 = 0; however, if E= 0, 
then this term will be excluded from (2) as well and the resulting sum designated by the 
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symbol Y: instead of Y,. For reasons of symmetry, it will be sufficient to consider 
0 G < 3. Further, in view of the fact that 

and 
. .m 
1 

Yu+l(E; a )  = J a z Y C 1  Y,(E; z )  dz, 

it will suffice to consider the most frequently occurring case Y = 0. At the same time, it 
will be convenient to denote the sums Xo and Yo by the simpler symbols X and Y, 
respectively. 

Some of the results obtained here are directly comparable with the ones recently 
reported by Fetter (1975) and by Hautot (1979,  while others are new and, in general, 
exhibit a remarkably fast convergence. 

2. Evaluation of the sum X ( E ;  a) 

As pointed out by Hautot (1979,  the Poisson summation formula of dimensionality 
two is not directly applicable to this sum because of the fact that the term with 
m l  = m2 = 0 is excluded from it. However, this difficulty can be circumvented by 
employing a technique due to Fetter et a1 (1966), as has already been demonstrated in I1 
in connection with a different sum. Following that procedure, we obtain 

X ( E ;  a )  = 1’ cos(2mlml) c o s ( 2 ~ ~ ~ m ~ ) ~ ~ [ a ( m : + m : ) ” ~ ]  
03 

m1,2=-m 

x {a’ +4r2[(m1 + E ] ) *  + (m2 +~2)~1} - l ,  (3) 
where y is Euler’s constant and B(r )  is given by equation (30) of 11, namely 

B(E)  = lim[T(r; a ) - T  ln(l/a)], 
a-0 

(4) 

where 

Equation (3), which holds for all a > 0, is similar to, but considerably simpler than, the 
one derived by Fetter (1975) in that a bunch of terms involving complicated lattice 
sums, which appear in Fetter’s expression and which finally depend only on E ,  have been 
replaced by a single function B(E) whose main properties have already been broached in 
11; see also equation (17) below. Recalling that 

B ( E  + 0) = ( 1 / E  2, + c2, (6) 
where 
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we obtain from (3) 

in complete agreement with equation I(14). The asymptotic behaviour of the sums 
X(E; a )  and X ( 0 ;  a),  as a +O, is readily obtained from the formulae (3) and (S), 
respectively. 

To obtain an alternative expression for X ( E ;  a ) ,  we first split off the terms with 
m2 = 0 and write 

X ( E ;  a )  = 2 C cos (27r~~m~)Ko(am~)  
m 

m , = l  

W 

+ 2  1 cos(27K2m2) ( f cos(27T€"Ko[a(m:+ m:,1/21)* 
m 2 = l  mi=-cc 

The first sum is tabulated (see Gradshteyn and Ryzhik 1965, formula (8.526), 1). To 
the last sum we apply Poisson's summation formula in one dimension, whereby 

f cos(2m lml)Ko[a (m + m:)1/21 
ml=-m 

exp{ - m2[a2 + 47r2(m1 + E ~ ) ~ I ~ ' ~ }  
[a2  + 4.rr2(ml + E ~ ) ~ ] ~ / ~  = 7 T  2 (m2 f 3). 

m l  =-w 

The summation over m2 is now straightforward and the final result is 

(9) 

cos(27r~2) - e x d  - [a2 + 4 d ( m  + ~ 1 ) ~ l " ~ ) .  
cosh[ a + 47r2( m + E 1)2] 'I2 - cos(27r~~)  ' 

it will be noted that in this expression only one-dimensional sums appear. 

X 

Three special cases of (10) will now be examined in detail. 

2.1. E = o  
Equation (10) now takes the form 

7r c o t h [ t ( ~ ~ + 4 7 r ~ m ~ ) ~ / ~ ]  1 
U 27rm X(0;  a )  = - coth($a) +In * (11) 

The sum appearing here converges for all values of a. In the extreme case a -* 0, one 
may utilise the facts that 

7r 27r 7r lim - coth($a) = 7 + - 
a-0 U a 6  

lim 2 4, cos(27rem) coth(7rm) = -ln(m)-g7r-zq 1 1  

c-0  m = 1  m III(8) 
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and 

O0 cos(2TTem) lim = -ln(2m). 
~ - - o m = i  m 

Equation (1 1) then reduces to 

11102) 

in agreement with the leading terms of (8). This asymptotic behaviour could also be 
obtained directly from (20) by taking the appropriate limits whereby one gets 

Since 

III(A. 1) 

we obtain the same result as in (12). Further, equating (8) and ( l l ) ,  we obtain the 
interesting relationship 

m =  1 - L) m 
TT coth(z + r 2 m  ') 

= ( l n 2 - $ ~ ) - ~ ( c o t h z - t )  22 

z 2  -- 1' (m ; + m ;) - [ z + TT 2( m ; + m 3 -  
~ T T  m1,2=-w 

which is again valid for all values of z.  The double sum appearing on the right-hand side 
of (13) can be expressed as a power series in z 2  by using the Hardy sums 

Equation (13) thus provides an explicit expression for the z dependence of the sum 
appearing on the left. At the same time, it expresses the double sum appearing on the 
right in terms of the single sum appearing on the left, which can be useful for large values 
of 2. 

2.2. 4 = (0,;) or (f, 0) 

In view of the exchange symmetry between el and e2, all results for el = 0, €2  = f must be 
the same as for el = f, €2 = 0. Equation (10) then leads to the identity 

2 2 1/2 
W c ~ t h [ f ( a ~ + ~ ~ ~ m ~ ) * / ~ ]  1 O0 c o s e c h ( a z + 4 ~  m ) 

1/2 =-tanh(fa)-2 1 * (15) (a2+.rr m ) 2a m = 1 (a2 + 4 ~ ~ ~ n " ) ~ / ~  
(-l)m-l 

m = l  

This relationship holds for all values of a and reduces the slowly convergent sum on the 
left to the rapidly convergent sum on the right. As an example, we may consider the 
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case a = 0 for which the sum on the left is known to be (see III(6b)) 

On the right-hand side, the closed part itself gives 0-25 and the remaining sum (see 
III(6c)) contributes a paltry 

Needless to say, the convergence will be even more rapid for a > 0. 

2.3. e # O , a + O  

We now obtain 

(16) 

Comparing (16) with the corresponding limit of ( 3 ) ,  we obtain a very useful expression 
for the function B(r) ,  namely 

1 cos(2mz)-exp(-27r(m +e1/) +f f - 
m=-m Im +e11 cosh(27rlm + E ~ ~ ) - C O S ( ~ T E ~ )  * 

(17) 
m 1 cos(2m2) - exp( - 2 4 m  + € 1  1) 

+.rr m?-m Im + e l (  cosh(2rlm +cll)-cos(27re2) * 

Setting cz = 0 and letting c1 + 0, we recover precisely the limiting behaviour (6). For 
e l  = e2 = i, we obtain 

The first sum is equal to 4(2 In 2 - 1) and the second sum is equal to 
Accordingly 

; see III(A.4). 

B (4,4) = 27r In 2 + cZ, 
Similarly 

1 00 

B(0, $) = ry -27r In 2 +7r2-4n 1 
m = l  m[exp(27rm)+l] 

and 

1 
(2m + l ( [ e x p ( + n  + 11)- I]’ 

m 

B(& 0) = ry +27r In 2 + 4 a  
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The sum in the former expression is equal to a( - 5 In 2 + 7~ + q )  and the one in the latter 
is equal to a(ln 2 - q); see III(A.2,3). In either case, we get 

B(0,;) = B($, 0) = 3 7 ~  In 2 + CZ. (19) 

3. Evaluation of the sum Y(r, a) 

By a direct application of the Poisson summation formula in two dimensions, we obtain 
the remarkable result 

For a + 0, equation (20) reduces to the asymptotic form 

27T 1 
Y(E;  ~ ) - - - + - A ( E ) ,  a’ 2 7 ~  

where 

c o s ( 2 m l m ~ )  cos(2m~m2) A ( € ) =  1’ 
m~.z=-m m:+m: 

The function A ( E )  has been studied in detail in I1 and 111. 

write [a2+4rr2(m:+m$)]-’ as 
To examine the case E = 0, we split off the terms m l  = m2 = 0 from both sides of (20), 

and insert the limiting forms 

lim A(€)  = -27r In (m) - m-, 
C-.O 

II(27) 

and 

lim Ko(ae) = - ln($ac) - y. 
€ +O 

Equation (20) then reduces to the expression (8) for X ( 0 ;  a), as expected. 
To obtain a more rapidly convergent form for Y ( e ;  a), we apply the one-dimen- 

sional Poisson formula to the summation over m l  and then carry out a straightforward 
summation over m2. We thus obtain 

(23) 
c o s ( 2 7 ~ ~ ~ m )  c o s h [ ( b - ~ ~ ) ( u ~ + 4 7 ~ ~ m ~ ) ~ ~ ~ ]  

2 2 1 2  Y(r;a) ’7T ,,,-cm (a2+4.rr m ) ’ s i n h [ ~ ( ~ ~ + 4 7 ~ ~ m ~ ) ~ / ~ ]  
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The original two-dimensional sum is thereby reduced to a one-dimensional sum. 
Incidentally, equation (23) could also be obtained directly from (20) by carrying out a 
summation over m2 with the help of the formula 

cos(mx) r cosh[(.rr - I x I ) a ]  
(ff ZO). 

a sinh(ra)  5 2= m=-mm +(Y 

For € 1  = e2 = f, equation (23) reduces to the sum S2(0 ,  0, $a ; 0) of Hautot (1975), while 
for cl = 0, e2 = 1 it reduces to his sum S4(0, 0, ;a ; 0). Further, equating Y(0,;;  a )  and 
Y($, 0; a) ,  we obtain a new identity 

(25) 
(- 1)” coth(z2+r2m2)’/’ = f  cosech(z’+ r2m2)1/2 

m=-m f (2’ + .rr2m 2)1’2 m=--m (z2+r2m2) l / ’  ’ 

which may also be written in the form 

f ‘I2 

2 2 1/2 

(26) 
( -  l)m-l coth(z2+r2m2)1/2 - tanh(1z) f cosech(z’+r m ) 

( z  + r’m 22 m = l  (z2+r2m2)1/2  ’ m = l  

Again, this relationship holds for all values of z and reduces the slowly convergent sum 
on the left to the rapidly convergent sum on the right; cf equation (15). 

In passing we observe that the identity 

which follows a direct application of the Poisson summation formula and contains a 
slowly convergent sum on the right-hand side, can be rendered more useful if it is 
coupled with the new identity (25). We thus obtain 

which converges rapidly for all values of z .  Further, setting z = k r  ( k  = 1 ,3 ,5 ,  . . .) 
and summing over k with the help of formulae III(15) and III(A.4), we obtain the 
following sum in a closed form: 

4 -3J2  2 f KO ( k l r )  =- rt4, P (9. 
k = l / = l  8 
odd odd 

Similarly, setting z = p r  (p = 2,4 ,6 ,  . . .) and summing over p with the help of formulae 
III(17) and III(A.2), we obtain another sum in a closed form: 

m r r  

p = 2 /-= 1 
even odd 

These results (29) and (30) are more basic than the one reported by Hautot (1974), 
namely 

odd 
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since his follows simply by subtracting (30) from (29). Moreover, if instead we add (29) 
and (30), we obtain another result of this type: 

m m  

m = l  1 = 1  
odd 

c 1 Ko(ml.rr) = a  In 2+;(2-d2)5(&I(i). 

It seems of interest to point out here that some of the (three-dimensional) lattice 
sums studied in I1 and I11 have also been considered earlier by Sholl(l967). Comparing 
his equation (3.22) with our III( 12a), we obtain yet another two-dimensional sum, 
involving modified Bessel functions, in a closed form: 

even 

Combining (33) with (30) and (32), we further obtain 
m m  m 

q=2 p = 2  m,n = 1 
even even 

1 1 Ko(qp.rr)= K0(4.rrmn)=tln(2.rr)-~y++(4-J2)5(&($) (34) 

and 
m 

m,n = 1 
Ko(mn.rr) = a  ln(s.rr)-by +a(4-d2)&P(q). (35) 

At this stage it is interesting to  observe that, by utilising the theta-function 
transformation (Zucker 1974) 

m m 

f q m : + m s =  &(q)  = 1 + 4  

2 ( - l )m-1Kda(2m-1)  1/2 n 1/2 ] - - 3  1 1’ K~[a(m:+m:)”~]=%(O; a). (37) 

q n ( i  +qZn)-l = 1 + 4  C (-  ~ ) ~ - - l q ( ~ ~ - - l ) ~  , (36) 
m 1.2= -m n = l  m,n = 1 

we can establish the following interesting identity: 
m m 

m.n = 1 m i,2= -m 

It follows that some of the results obtained in 0 2 apply equally well to the sum 
appearing on the left-hand side of (37). 
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